Research Paper: A Text Mining Approach to the Prediction of Disease Status from Clinical Discharge Summaries

نویسندگان

  • Hui Yang
  • Irena Spasic
  • John A. Keane
  • Goran Nenadic
چکیده

OBJECTIVE The authors present a system developed for the Challenge in Natural Language Processing for Clinical Data-the i2b2 obesity challenge, whose aim was to automatically identify the status of obesity and 15 related co-morbidities in patients using their clinical discharge summaries. The challenge consisted of two tasks, textual and intuitive. The textual task was to identify explicit references to the diseases, whereas the intuitive task focused on the prediction of the disease status when the evidence was not explicitly asserted. DESIGN The authors assembled a set of resources to lexically and semantically profile the diseases and their associated symptoms, treatments, etc. These features were explored in a hybrid text mining approach, which combined dictionary look-up, rule-based, and machine-learning methods. MEASUREMENTS The methods were applied on a set of 507 previously unseen discharge summaries, and the predictions were evaluated against a manually prepared gold standard. The overall ranking of the participating teams was primarily based on the macro-averaged F-measure. RESULTS The implemented method achieved the macro-averaged F-measure of 81% for the textual task (which was the highest achieved in the challenge) and 63% for the intuitive task (ranked 7(th) out of 28 teams-the highest was 66%). The micro-averaged F-measure showed an average accuracy of 97% for textual and 96% for intuitive annotations. CONCLUSIONS The performance achieved was in line with the agreement between human annotators, indicating the potential of text mining for accurate and efficient prediction of disease statuses from clinical discharge summaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Text Mining Approach to the Prediction of Disease Status from Clinical Discharge Summaries

Design: The authors assembled a set of resources to lexically and semantically profile the diseases and their associated symptoms, treatments, etc. These features were explored in a hybrid text mining approach, which combined dictionary look-up, rule-based, and machine-learning methods. Measurements: The methods were applied on a set of 507 previously unseen discharge summaries, and the predict...

متن کامل

Research Paper: A System for Classifying Disease Comorbidity Status from Medical Discharge Summaries Using Automated Hotspot and Negated Concept Detection

OBJECTIVE Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatica...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

Statistical Section Segmentation in Free-Text Clinical Records

Automatically segmenting and classifying clinical free text into sections is an important first step to automatic information retrieval, information extraction and data mining tasks, as it helps to ground the significance of the text within. In this work we describe our approach to automatic section segmentation of clinical records such as hospital discharge summaries and radiology reports, alo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Medical Informatics Association : JAMIA

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2009